

3DSSE – A 3D Scene Search Engine

:: Exploring 3D Scenes using keywords ::

Dr. Anestis Koutsoudis

Special Functional Scientist C' – Computer Science Cultural and Educational Technology Institute/ R.C. 'Athena'

Cultural Heritage Dissemination

Some media for dissemination

- Sketches, designs, drawings, paintings
- Textual Information → Resource for metadata production and annotation
- Photographs, Video sequences (2D Digitization)
- 3D Digital Replicas (3D Digitization)

2D and 3D Digitization

- Two different worlds in terms of complexity and potentiality
- 3D digitization aims towards the production of complete digital replicas
- 3D Scanning → Despite it's small age → A common practice in the cultural heritage domain

3D Data

- More complex in terms of
 - → Parsing, Visualizing, Manual Exploring (Virtual touring)
- More demanding in
 - → Processing power, Data storage facilities and network bandwidth

Enabling efficient access to 3D reconstructions' content

Content of a 3D data file

 Just like in a 2D image, a 3D model might contain from a Single artefact, a monument up to a whole urban area

Assuming a file that contains the 3D reconstruction of a traditional architecture settlement...

- Can it be considered as a collection of objects, thus a static database?
- Maybe...It certainly contains multiple ontologies (buildings, statues, artefacts, etc)

Enabling efficient access to 3D reconstructions' content

There is a need to provide the end-user with

Efficient Access and Retrieval Mechanisms for 3D scenes

A solution might be given by combining

- A 3D scene annotation and metadata generation tool (e.g. The EPOCH Viewer)
- A keywords-based search engine that utilises metadata

Such a combination will SHIFT the end-user from the

- Time consuming manual exploration process of identifying areas of interest
- Into a more efficient and user friendly approach for exploring 3D scenes

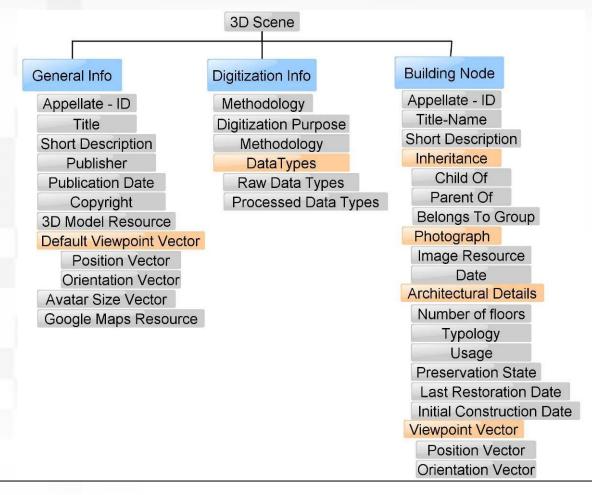
An experimental keyword-based search engine for 3D scenes

A Case Study

3D reconstructions of urban areas in Northern Greece

Working approach

- 3D reconstructions in VRML 2.0 format Internet Friendly properties
- Annotate the 3D scene using a custom tool
 - Building façade viewpoint identification
 - Architectural properties and Historical details for each building



An experimental keyword-based search engine for 3D scenes

Working approach continued...

- Primitive XML based metadata schema → Based on the available textual material
 - → Requires further development → Efficient for demostration purposes

Querying the search engine

The user provides the search engine with a keyword-base query:

- The content of the query can referred to:
 - Architectural details

Number of floors

Usage

Preservation state

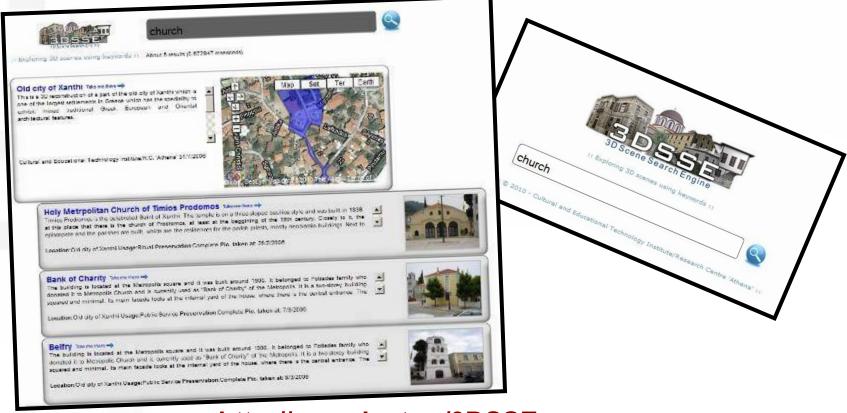
Initial construction dates

Restoration dates

- Textual information included in the Short historical descriptions of each building
- Actually limited by the contents of the record schema

1: Exploring 3D scenes using keywords 11

church



Querying the search engine

A query reply contains:

- A thumbnail image depicting the façade of a building
- Short descriptions for the building
- A link that will directly place the virtual visitor in front of the building in the 3D scene

Future Work

- Adapt a metadata standard schema
- · Create a more sophisticated query parsing mechanism
- Provide the end-user with directions on how to get there or proposed routes for touring
- Annotate more 3D scenes
- Consider the integration of content-based retrieval mechanisms within the 3D scene
 - → http://polymnia.ipet.gr/akoutsou/museum

Thank you